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Abstract: (1) Background: Lymphangioleiomyomatosis is a genetic disease that affects mostly women
of childbearing age. In the lungs, it manifests as the progressive formation of air-filled cysts and
is associated with a decline in lung function. With a median survival of 29 years after the onset of
symptoms, computed-tomographic monitoring of cystic changes in the lungs is a key part of the
management of the disease. However, the current standard method to measure cyst burdens from CT
is semi-automatic and requires manual adjustments from trained operators to obtain consistent results
due to variabilities in CT technology and imaging conditions over the long course of the disease. This
can be impractical for longitudinal studies involving large numbers of scans and is susceptible to
subjective biases. (2) Methods: We developed an automated method of pulmonary cyst segmentation
for chest CT images incorporating novel graphics processing algorithms. We assessed its performance
against the gold-standard semi-automated method performed by experienced operators who were
blinded to the results of the automated method. (3) Results: the automated method had the same
consistency over time as the gold-standard method, but its cyst scores were more strongly correlated
with concurrent pulmonary function results from the physiology laboratory than those of the gold-
standard method. (4) Conclusions: The automated cyst segmentation is a competent replacement
for the gold-standard semi-automated process. It is a solution for saving time and labor in clinical
studies of lymphangioleiomyomatosis that may involve large numbers of chest CT scans from diverse
scanner platforms and protocols.
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1. Introduction

Lymphangioleiomyomatosis (LAM) is a genetic multi-system disease that causes the
progressive formation of air-filled cysts in the lungs (Figure 1A), together with the loss of
lung function and occurrences of pneumothorax (the collapse of a lung) and chylothorax
(the buildup of fluid in the chest) [1-7]. The disease primarily affects women of child-
bearing age [1-7]. There are two types of LAM disease: a sporadic form, which occurs
in approximately 3 to 8 per million women, and an inherited form associated with the
rare genetic disease of tuberous sclerosis complex (TSC) [6]. With treatment and supple-
mental oxygen, patients have a transplant-free median survival of 29 years after the onset
of symptoms [6,8,9]. Computed tomographic (CT) measurements of the cystic changes
in the lungs over time are an integral part of the management of the disease, providing
valuable markers of the severity and rate of disease progression and aiding treatment
decisions [10-18].
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Figure 1. Air-filled pulmonary cysts from the disease lymphangioleiomyomatosis and the variability
of chest CT images over time and across different scanner platforms. (A) A three-dimensional
rendered view of a portion of the lung from the chest CT scan of a patient. The bubble-like structures
in the lung highlighted in yellow are air-filled cysts, a hallmark of the disease. (B,C) High-resolution
CT images of the same location in the chest of the same patient were acquired 12 years apart from
two different scanner platforms. Both are displayed in the grayscale range of —1100 HU to 0 HU.
This is an example of the variability of image quality and characteristics.

In LAM, the extent of pulmonary cysts correlates with the decline of lung func-
tion [10-20]. CT-derived quantitative assessment of pulmonary cysts initially was a
visual determination of the percentage of the lung that involved cysts [19,20]. Later,
semi-automated software was introduced to provide measures of cystic changes from
high-resolution chest CT (HRCT) scans, including the total volume of the pulmonary cysts
normalized to the total parenchyma or air volume in the lungs [10-18]. Currently, com-
mercial semi-automated software dedicated to pulmonary cyst measurements is available
on some scanner platforms (Canon Medical Systems USA, Inc., Tustin, CA, USA), which
provides the volume percentage of the lungs occupied by cysts, or “cyst score” [10].

Given the long duration of the disease, it is challenging to obtain consistent and
accurate measurements of the cystic changes in the lungs for individual patients over
a period of decades due to changes in scanner platforms, imaging technologies, and
physiological conditions. As a result, current FDA-approved gold-standard methods for
the identification and measurement of cysts in CT scans include manual adjustments and
corrections by trained operators [14-16,21,22]. However, when it comes to longitudinal
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studies involving a large number of CT scans over several decades from a population of
patients, the time needed to perform such semi-automated analysis would be impractical,
and the results are also susceptible to inter-operator variability and intra-operator drifts.
For such studies, fully automated analysis is desirable.

Previously, an automated method has been described to obtain the global volume
percentage of cysts in a group of patients with identical scan and image reconstruction
settings on a single scanner platform [18]. However, this method does not identify the
pulmonary cysts in the images, thus precluding measurements such as the size and the
spatial distribution of the cysts and tissue texture analysis around the cysts, which are
clinically relevant [14,15,22-24]. It is also based on assumptions about the global histogram
distribution of radiodensity values in the lungs, which could not be applied to studies that
involve multiple scanner platforms and scan/reconstruction settings.

Therefore, there is an unmet need for automated segmentation and measurements
of pulmonary cysts in HRCT images of LAM disease, particularly in the presence of
instrumental and physiological variabilities. In this paper, we introduce an automated
method to meet this need. We tested its longitudinal consistency and accuracy against the
FDA-approved gold-standard semi-automated software in a longitudinal study involving
multiple scanner platforms over a period of two decades.

1.1. Variability of the Scanner Platform and Imaging Conditions in Longitudinal Studies

To describe the level of variability in HRCT scans that we encountered in longitudinal
studies, in a survey of 268 high-resolution chest CT (HRCT) image series from 24 LAM
patients over a period of 23 years, we found them to be from 12 different scanner models
from four different manufacturers (Ge Medical Systems LightSpeed Ultra, Ge Medical
Systems LightSpeed QX/i, Ge Medical Systems HiSpeed CT/I, Ge Medical Systems Gen-
esis_Hispeed_RP, Siemens Definition, Siemens Biograph128, Siemens Somatom Force,
Siemens Somatom Definition Flash, Philips Brilliance 64, Philips Mx8000 IDT 16, Toshiba
Aquilion One, and Canon Aquilion One/Prism). Eighteen different image reconstruction
kernels were used at various times over the two decades. Of these image series, 39% were
performed with contrast agents, with varying delays after contrast injection and levels of
contrast enhancement of the lung tissue. An example of the diverse image quality and
appearance is illustrated in Figure 1B,C. The two images were from the same patient. They
were acquired on two different scanner models, 12 years apart.

1.2. Variability of the Radiodensity of Air Inside and Outside the Chest

As a result of the diverse scanner platforms and imaging conditions summarized
above, one aspect of the image variability relates to the radiodensity of large air spaces,
both internal and external to the lungs. First, the average radiodensity of the external air
background in an image series, which ideally should be calibrated to —1000 Hounsfield
units (HU), ranged from —954 HU to —1018 HU. The frequency histogram of the air
background level among the image series is shown in Figure 2, with a mean =+ standard
deviation of —994.6 £ 11.6 HU. Secondly, the radiodensity of large internal air spaces in
the lungs, including the trachea and the main bronchi, may be dependent on their position
in the superior-inferior direction, especially in the apical region of the chest. This is visible
in the coronal cross-section through an HRCT series (Figure 3A). This is also confirmed
in the plot of the radiodensity in the trachea and the main bronchi versus the vertical
position (Figure 3B). Since pulmonary cysts are a type of air space within the lungs, their
radiodensity will fluctuate along with both the external air background and the internal
large airways.
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Figure 2. Frequency histogram of the average radiodensity of the empty air background around
the body of 268 chest CT image series of LAM patients. The scans were from 12 different scanner
models over a period of 23 years. The air background, by definition, should have a radiodensity of
—1000 HU. The actual values were diverse due to variable scanner technology and the quality of
scanner calibration.
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Figure 3. Variability of the radiodensity of air in large airways along the superior-inferior direction.
(A) A reformatted coronal section through an HRCT image series. The radiodensity of air in the
trachea is seen to vary with the axial position. The radiodensity of air in the pulmonary cysts in the
apical region of the lungs followed the same variation. (B) A plot of the average radiodensity of air in
the trachea and the main bronchi as a function of the position in the superior-inferior direction.

1.3. Variability of the Radiodensity of the Pulmonary Parenchyma

Another aspect of the image variability relates to the radiodensity of the pulmonary
parenchyma. These values varied from patient to patient (Figure 4) and occasionally within
the same section of a scan (Figure 5). Physiologically, aside from inherent variability among
a population, the parenchymal radiodensity is influenced by the level of compliance on the
part of the patient during an inspiratory scan, as well as transient radiologic abnormalities
such as atelectasis that may be present in local areas of the lung. In the example of Figure 4,
the mean parenchymal radiodensity of the two patients differed by 113 HU, or 120% of the
apparent density of the pulmonary parenchyma of the second patient (Figure 4A,B). As
a result, the manually adjusted thresholds in the semi-automated segmentation of cysts
differed by 90 HU between the two patients, at —880 HU and —970 HU, respectively
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(Figure 4C,D). In the example of Figure 5, atelectasis in the anterior portion of the lungs
leads to elevated radiodensity in that area. Consequently, in the semi-automated cyst
segmentation, the optimal setting determined by the operator under-segmented the cysts
in the anterior region.

Figure 4. An example of the variability in the radiodensity of air and non-cystic lung parenchyma
across different patients and scanner platforms and the consequences on cyst segmentation.
(A,B) Chest HRCT scans of two patients from two different scanner platforms in supine and prone po-
sitions, respectively. Both are displayed in the grayscale range of —1050 HU to —600 HU to highlight
lung parenchymal structures. The average radiodensity of the air background outside the body was
—971 HU in (A) and —1006 HU in (B). The average radiodensity of non-cystic lung parenchyma was
—805 HU in (A) and —918 HU in (B). (C,D) Optimal cyst segmentation was determined by a trained
operator using the gold-standard commercial semi-automated software. The threshold radiodensity
for cystic areas was adjusted by the operator to —880 HU for the image series in (A) and —970 HU for
the image series in (B). The cystic areas are highlighted in green. (E,F) Automated cyst segmentation
without user input. The automated method accounted for the variability of radiodensity values to
provide the appropriate segmentation (highlighted in green).
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Figure 5. An example of within-section variability of the radiodensity of the pulmonary parenchyma
and its impact on cyst segmentation. (A) An HRCT section of a LAM patient lying in the prone
orientation is displayed in the grayscale range of —1100 HU to —500 HU. The anterior portion
of the lungs was enhanced due to positional atelectasis. (B) The gold-standard semi-automated
segmentation by a trained operator, who set a global threshold for cystic areas to —930 HU. Cystic
areas are highlighted in green. The anterior region of the lungs was under-segmented due to the
elevated parenchymal radiodensity there (highlighted by the red circles). (C) The automated cyst
segmentation. The automated method accounted for regional variations of radiodensity, which
mitigated the problem of under-segmentation in the anterior region.

In light of the CT variabilities described above, we developed an automated segmen-
tation of pulmonary cysts with radiodensity thresholds that were adapted to the local
radiodensity of non-cystic parenchyma, which in turn was calculated with a smoothed
histogram filter algorithm [25,26]. In the media industry, smoothed histogram filters are
commonly used to produce stylized graphics [25]. We used it previously with satisfac-
tory results in automated segmentation of pulmonary blood vessels in post-COVID-19
patients [26].

2. Materials and Methods
2.1. Study Population

We performed a retrospective longitudinal study of 192 chest CT image series from
24 LAM patients enrolled in the clinical research protocol “Role of Genetic Factors in the
Pathogenesis of Lung Disease” (clinicaltrials.gov NCT00001532) at the Clinical Center of
the National Institutes of Health, Bethesda, Maryland, USA, over a period of 23 years
from 1999 to 2022. The protocol was approved by the National Heart, Lung, and Blood
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Institute, National Institutes of Health Institutional Review Board (IRB # 96-H-0100). The
patients were monitored with chest scans of various forms at intervals of 1 to 2 years
during this period. All image series included in this study received the standard semi-
automated cyst measurements by FDA-approved commercial software. A subset of the CT
examinations had concurrent pulmonary function tests (PFTs) in the pulmonary physiology
laboratory during the same hospital visit. The authors had access to information that could
identify individual participants during or after data collection. All patients were female
and had been diagnosed with LAM according to the American Thoracic Society/Japanese
Respiratory Society criteria [27,28].

2.2. Metrics for Assessing the Quality of the Cyst Segmentation

In LAM, conventional measures of the extent of cystic changes in the lungs are based
on the percentage of the total lung volume replaced by cysts, called the cyst score [14,17-20].
The quality of the cyst segmentation was evaluated through the cyst score and two quanti-
tative metrics. The first is the longitudinal inconsistency over time, illustrated in Figure 6.
In the graph of the cyst scores vs. time for an individual patient, variabilities of scan
technology and physiological conditions can lead to rapid fluctuations of the values from
year to year or inconsistency of the measurement over time. The metric of longitudinal
inconsistency is defined as the standard error of linear regression for every group of three
consecutive cyst scores (Figure 6). Thus, a patient who underwent 9 CT scans over a period
of 18 years will have 7 measures of longitudinal inconsistency. We additionally analyzed
the maximum of the inconsistency measures as the worst inconsistency for each patient.

=@—Reference-standard semi-automated —@— Automated

0.3

0.25

Cyst score

0 5 10 15 20
Time since 1st CT scan (yr)

Figure 6. Illustration of the measurement of inconsistencies in the cyst scores over time for individual
patients (longitudinal inconsistency). The graph plots the cyst scores of a LAM patient over a period
of 18 years, during which she received 9 CT examinations. The scores from the two segmentation
methods are plotted in separate lines. The rapid fluctuation of the scores from exam to exam reflects
measurement inconsistencies due to changes in instrumental factors and imaging conditions. The
longitudinal inconsistency is defined for each group of 3 consecutive scores as the standard error of
the linear regression over the three data points. In the graph, the measure represents the deviations
of the three consecutive data points from the short straight line. There are 7 measurements of
longitudinal inconsistency in total for the time course in this example.
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The second metric evaluates the accuracy of the cyst scores by their correlation with
concurrent pulmonary function tests [18]. The pulmonary function tests included the
spirometry tests of forced expiratory volume in the first second as a % of predicted reference
values (FEV1_pp), FEV1 normalized to the vital capacity as a % of predicted reference
values (FEV1/FVC_pp), and the laboratory test of the diffusion capacity of the lungs for
carbon monoxide adjusted for hemoglobin as a % of predicted reference (DLco_adj_pp) [29].
These correlations were calculated for all CT scans where the patients had concurrent PFTs
on the same hospital visit.

2.3. Reference Gold-Standard Semi-Automated Cyst Segmentation

The reference standard against which the new automated analysis was evaluated
was FDA-approved commercial software on a modern scanner platform (Canon Medical
Systems USA, Inc., Tustin, CA, USA). The analysis was performed by two operators with 1
and 2 years of experience in scoring HRCT scans of LAM patients. They were blinded to
the results of the automated method.

The analysis consisted of a sequence of steps. After importing the image DICOM
series into the software, it first performed a fully automated segmentation of the lung
volume and the large airways. The optimal segmentation of the cysts was then determined
visually by an operator through manual adjustment of a global threshold of radiodensity.
Manual editing of individual areas was available if needed. Examples of cyst segmentation
by the reference standard software are illustrated in Figures 4C,D and 5B. Following the
segmentation, the total volume of cysts was calculated, and the ratio of the total cystic
volume over the total lung volume provided the cyst score.

2.4. Automated Cyst Segmentation

The pipeline of the automated analysis included a sequence of modules (Figure 7).
The basic idea was to determine the cystic areas according to local radiodensity thresholds
that were set at the midpoint between the local values of large air voids and non-cystic
parenchyma. These values were calculated from a combination of automated segmentation
of large airways and local smoothed histogram filtering. An advantage of smoothed
histogram filtering is that the mode (peak) of the histogram is unaffected by small changes
in the upper and lower limits of the range of values that were deemed relevant, making it a
robust method.

The first module in the pipeline applied a conditional Gaussian filter to the raw image
series to obtain an approximate in-plane resolution of 0.529 mm. We found in practice
that the resolution and noise level of the raw image series were largely determined by the
image reconstruction kernel used. We encountered 18 different reconstruction kernels on
the 12 scanner models. Empirically, we compiled a list of the appropriate filter widths for
the 18 kernels, which was then applied to all image series accordingly.

The next modules included automated segmentation of the lung volume based on a
threshold of radiodensity [26,30], followed by automated segmentation of the trachea in the
superior sections of the image series based on radiodensity thresholding. The upper trachea
was then automatically extended down to the tree of large airways based on radiodensity
thresholding and connectivity. The next step was to determine the average radiodensity of
the empty air space around the body. This was based on the frequency histogram of the
radiodensity of all voxels in the imaged volume. The air background value was identified
as the first substantial peak in the histogram above the value of —1024 HU. It is noted

as Ibackground :
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Raw DICOM image stack

v

Recon-kernel-specific filtering to
equalize image resolution

Y

Automated lung volume segmentation
by Radio-density thresholding

v

Histogram-based determination of
air background radio-density

Automated segmentation
of trachea and bronchi

\

Calculation of average radio
density of large intra-pulmonary
air space for each slice in stack

Calculation of radio-density
distribution of non-cystic parenchyma
by local smoothed histogram filtering

\

Calculation of the distribution of local
radio-density thresholds for cystic areas

v

Segmentation of the cystic areas
and follow-on measurements

Figure 7. Diagram of the pipeline of the automated method to identify and segment the cystic areas
in high-resolution chest CT (HRCT) series of patients with lymphangioleiomyomatosis (LAM).

The next module combined the airway and air background information from the
previous module to derive the typical radiodensity of a large air space in the chest, such
as a bronchus or a large cyst. It first determined the average radiodensity within the
segmented large airways (Figure 3B). This was done on a section-by-section basis for all
sections that contained segmented airways. The value at the most inferior position was
then copied to all remaining sections below. These values are noted as Lyjrway(z), where z is
the position of the CT section in the inferior—superior direction. Then, the average of the
global air background value and the airway value of each section was taken as the typical
radiodensity of intra-lung air space in that section:

Lair(2) = [lairway(2) + Ibackgroundl/2. This value served as a reference point for local
smoothed histogram filtering in the next step.



Bioengineering 2023, 10, 1255

10 of 15

The next module determined the typical radiodensity of non-cystic parenchyma for all
locations in the lungs. In each CT section, a locally smoothed histogram filter was applied to
the radiodensity values of all areas in the lungs, excluding the previously segmented large
airways and large vessels. The histogram window was a circular area of 35 mm in diameter
with a smoothed Gaussian profile that gave more weight to pixels near the center of the
window. At each image pixel, a weighted frequency histogram within the radiodensity
range of I,;;(z)+25 and —500 HU was calculated from the values of all pixels within the
histogram window centered at the pixel. This range of radiodensity excluded large air
voids and blood vessels. Then, the radiodensity of the local non-cystic parenchyma, I,(x, y,
z), was defined as the dominant mode of the local histogram. An example of the raw CT
image (Figure 8A) and the calculated image of the radiodensity of non-cystic parenchyma
(Figure 8B) are given in Figure 8. It should be noted that the histogram filter would not yield
results at the centers of cysts or air voids if they were larger than the histogram window.
However, as explained below, this would not affect the identification and segmentation of
the cysts.

Figure 8. An example of deriving the radiodensity distribution of non-cystic parenchyma in the
lungs by a local smoothed histogram filter. (A) The raw HRCT section is displayed on a grayscale of
—1100 HU to —500 HU. (B) The calculated radiodensity distribution of non-cystic parenchyma in the
lungs. The dark voids in the distribution are areas of bright vessels.

In the last module of the pipeline, the cysts in the lungs were identified as areas of
radiodensity that meet the condition of I(x, y, z) < [I,(x, y, z) + Lir(2)]/2 where I,(x, y, 2)
exists, or I(x, y, z) < L4ir(z) + 25 HU where I,(x, y, z) is not available, such as at the centers of
very large cysts. The cyst score was then calculated by summing the total volume of the
cystic areas and dividing the result by the total lung volume.

3. Results

In all statistical results, a p-value of less than 0.05 is considered statistically significant.
An example comparing automated cyst segmentation with commercial semi-automated
segmentation is given in Figure 4. The example included two image series from two
patients with markedly different radiodensities of the lung parenchyma (Figure 4A,B). In
the gold-standard semi-automated analysis, the operator set the global threshold for cysts
to —880 HU and —970 HU, respectively, to attain satisfactory segmentation in each series
(Figure 4C,D). The automated method provided appropriate cyst segmentation in both
series without user input (Figure 4E,F).
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An example of cyst segmentation in the presence of variable parenchymal radiodensity
within the same section is given in Figure 5. In this example, the anterior portion of the
chest was enhanced by positional atelectasis (Figure 5A). The reference standard semi-
automated segmentation was optimized by the operator at a global threshold of —930 HU
for cysts (Figure 5B). However, the anterior portion (outlined in red in Figure 5B) was
under-segmented. This was mitigated by the automated segmentation (Figure 5C).

3.1. Comparison of the Longitudinal Consistency of Cyst Scores over Time

The first result in this category included measures of longitudinal inconsistency from
every group of three consecutive cyst scores in every patient that had three or more CT
scans in the study period. There were 132 measures from 22 patients. The longitudinal in-
consistency of the reference standard semi-automated method was 0.013 £ 0.015 expressed
in mean =+ standard deviation, and the longitudinal inconsistency of the automated method
was 0.012 £ 0.016 (Figure 9A). The two were statistically equivalent, with a p-value of 0.41.
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Figure 9. Comparison of the gold-standard semi-automated cyst segmentation and the new auto-
mated segmentation in terms of the longitudinal inconsistencies in the resulting cyst scores. (A) The
average and standard deviation of the longitudinal inconsistency measures from all CT scans. The two
methods had statistically equivalent levels of longitudinal inconsistency (p-value = 0.41). (B) Statistics
on the maximum longitudinal inconsistency for each patient. The average of the maximum values
from the 22 patients is graphed, with error bars representing the standard deviation among the
patients. The two methods had statistically equivalent levels of maximum longitudinal inconsistency
for individual patients (p-value = 0.21).

The next result in this category looked at the worst-case inconsistency for each patient
based on the maximum longitudinal inconsistency within the time course of that patient.
With the reference standard semi-automated method, the average maximum longitudinal
inconsistency among the 22 patients was 0.025 4= 0.031 (mean & standard deviation), and
the average maximum longitudinal inconsistency of the automated method was slightly
lower at 0.016 £ 0.022 (Figure 9B). The difference did not reach statistical significance
(p-value = 0.21).

3.2. Comparison of the Correlation between Cyst Scores and Pulmonary Function Test Results

A total of 43 CT examinations from 10 patients had concurrent pulmonary function
tests performed during the same hospital visit. These scans were included in the calculation
of Pearson’s correlation between the cyst scores and the pulmonary function test results. For
the gold-standard semi-automated method, the R? values of the correlation between the cyst
score and the spirometry test results were 0.568 for FEV1_pp and 0.525 for FEV1/FVC_pp.
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The correlation between the cyst score and the diffusion capacity DLco_adj_pp was 0.443.
For the automated method, the R? values of the correlation between the cyst score and the
PFT results were higher, with an R? value of 0.754 for FEV1_pp, 0.799 for FEV1/FVC_pp
and 0.515 for DLco_adj_pp (Figure 10). The difference in the correlation with the PFT result
of FEV1/FVC_pp was statistically significant at a p-value of 0.024. The difference in the
correlation with the other two PFT results did not reach statistical significance (p-values of
0.14 and 0.65).

g
©

p=0.024

o e o
o N o

Pearson's correlation R2 between cyst scores and PFTs
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[%,]
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03
0.2
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(n=40) (n=40) (n=43)

m Reference-standard semi-automated m Automated

Figure 10. Comparison of the gold-standard semi-automated cyst segmentation and the new auto-
mated segmentation in terms of the correlation between the resulting cyst scores and the pulmonary
function test results. The R? values of Pearson’s correlation are graphed. The automated method
provided cyst scores that were more strongly correlated with the pulmonary function results. The
difference was statistically significant for the correlation to the spirometry test of FEV1/FVC (%
predicted), with a p-value of 0.024.

4. Discussion

Lymphangioleiomyomatosis is a genetic disease that manifests in the lungs as the
progressive formation of air-filled cysts that replace normal parenchyma. In the relatively
long course of the disease, accurately monitoring the extent of cystic changes in the lungs
by computed tomographic scans is an integral part of the management of the disease, with
implications for treatment decisions such as the use of medication and consideration for
lung transplantation [12]. Given the length of time involved, the quality and characteristics
of the CT images can vary widely over time with the changes in scanner models, technolo-
gies, and protocols, making it challenging to obtain consistent and accurate measurements
of the cystic damage in the lungs. The current gold-standard semi-automated analysis
depends on the input of trained operators to overcome the variability, but it is susceptible
to inter- and intra-operator variabilities and can be impractical for longitudinal studies
covering periods of several decades.

To meet the need for large-scale studies involving diverse imaging conditions, we
developed a method of fully automated cyst segmentation. A key element of the method
was to derive local radiodensity thresholds for cysts from the images themselves, using
information from the large airways and applying the graphics processing tool of local
smoothed histogram filtering. We evaluated its performance against the current gold-
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standard semi-automated method in a retrospective study of 192 CT scans from 12 scanner
models over a period of 23 years. We looked at a common measure of the extent of
cystic changes in the lungs called the cyst score, which is defined as the total volume
of cysts as a percentage of the total lung volume. The quality of cyst segmentation was
assessed by two metrics: the inconsistency (rapid fluctuations) of the cyst score over time
for individual patients and the correlation of the cyst score with pulmonary function test
results from the physiology laboratory. The first metric was a new metric that is relevant to
monitoring disease progression over time in individual patients. The second metric was
used extensively in previous studies of pulmonary cysts in LAM [10-18].

The results showed that the automated method provided the same longitudinal con-
sistency as the gold-standard method both in terms of the average fluctuations (0.012
vs. 0.013, p-value = 0.41) and the maximum fluctuation in each patient (0.016 vs. 0.025,
p-value = 0.21). The automated method provided cyst scores that were more strongly corre-
lated with the pulmonary function test results than the gold-standard method, particularly
in the correlation with the spirometry result of FEV1/FVC (p-value of difference = 0.024).

The results suggest that the automated cyst segmentation had the same longitudinal
consistency as the gold-standard semi-automated method. On the other hand, it was more
accurate than the gold-standard method in terms of the correlation of the cyst scores with
pulmonary function tests, even though the operators of the standard method were experi-
enced in cyst-scoring LAM patients. A limitation of this work is the number of CT scans
that had concurrent pulmonary function tests (n = 43), which limited the statistical power
when comparing the correlations between cyst scores and pulmonary function results.
Another limitation is that the automated method is not yet approved for standard patient
care and therefore can only be used for research studies and not for routine clinical reports.

The automated method was implemented on a personal workstation with the data
language IDL (NV5 Geospatial, Broomfield, CO, USA). The IDL language has a native
layer of multi-CPU parallel processing in basic array and matrix calculations, although
the computation speed was limited by the few CPU units in the personal workstation.
The computation time for a typical HRCT image series of about 320 thin sections was
approximately 9 min. Nevertheless, the computationally expensive elements of the method,
such as the smoothed histogram filters, are amenable to large-scale parallelization on
GPUs. Thus, there is the possibility of substantially accelerated computation and shortened
processing times.

Combined with the advantage of being fully objective without human bias, automated
cyst segmentation can be considered a competent and reliable option for saving time and
labor in future clinical studies of LAM that may involve large numbers of chest CT scans
from diverse scanner platforms and protocols. Apart from the measurement of the cyst
score, the cyst segmentation it provides also serves as the starting point for more advanced
analysis of cyst morphology and characteristics of the lung parenchyma, either near or far
from the cysts, which have proven to be valuable in previous clinical studies of the nature
of the disease and response to treatment [14,15,22-24].
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